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1. MEASUREMENT AND MODELING OF REAL-TIME CURRENTS

It is well established that ocean near-surface currents
are relatively transient in character and can contain a
number of large eddies (Gade, Malmberg, and Stefanson, 1965).
Kvinge, Lee and Saetre (1968) found in a study of the varia-
bility of the Norwegian Sea, for example, that the basic
Norwegian current can change to the opposite flow within a
few days. Furthermore, they noticed drastic changes in
currents related to atmospheric frontal passages. Malmberg,
Gade, and Sweers (1967) found two to three day periodicities
in fluctuations of both speed and direction of the permanent
current flow in the area between Iceland and Greenland.
Furthermore, the observations indicated a time lag between
wind and surface current change of up to 24 hours. The
direction of the surface current seemed at times, however,
to be determined by factors other than local prevailing wind.
This variability of currents is also found in areas where
relatively steady currents are generally assumed to prevail,
such as in the Gulf Stream regime where Defant (1940) demon-
strated the great variability of currents at various levels.

It is technically difficult and expensive to make real-
time current measurements in offshore areas. Furthermore the
evaluation of the current recordings obtained with the recently
used moored instruments pointed up considerable difficulties
(e.g., swaying of the instruments in the mooring line). 1In
any case, some reliable current recordings are presently
available for offshore areas, especially in the North Atlantic
Ocean. A discouraging factor in the evaluation of the
available deep ocean current recordings has been the difficulty
of obtaining a coherent picture of currents in space and time
due to the relatively great variability over short periods of
time.



Extensive efforts have been made in the last 20 years to
numerically model the general circulation of the oceans.
Unfortunately the models used in these attempts do not yet
satisfactorily reproduce the general circulation of the oceans
as we know it from the available surface current charts or
from the circulation studies based on the ”core"* method in
sub-surface layers. These shortcomings are now apparent and
the difficulties of reproducing the currents in the ocean with
the approaches used in general circulation models has been
generally recognized.

Hydrodynamical-Numerical (HN) models of the Walter Hansen
type (Hansen, 1956) have been able to reproduce real-time
currents in the oceans. These models have been applied in
numerous cases to semi-closed shallow seas and estuaries.
Lately, however, they have been applied with considerable
success to deep ocean areas with multiple open boundaries by
the Environmental Prediction Research FachsTEiss va

Several slightly different versions of the Multi-Layer
Hydrodynamical-Numerical (MHN) models have been devised,
though they have not been fully described in the available
Titerature (see e.g., Hamilton, Williams and Laevastu (1973)).
This paper describes the application of a three-Tayer MHN
model of W. Hansen type to the relatively complex area off
southern California using three open boundaries. The length
of this paper does not allow exhaustive treatment of the
multi-Tayer problem. This will be done in subsequent papers.
The main objective here is to present the MHN formulas with
their finite difference forms, briefly describe the treatment
of the open boundaries, and show the preliminary results of
the application of the model.

*

The core method, developed by G. Wiist, is based on an
estimation of the circulation in the ocean by following the
distribution of layers of maximum salinity, oxygen minimum,
or other conservative and semi-conservative properties.



2. THE BASIC MULTI-LAYER HYDRODYNAMICAL EQUATIONS AND THEIR
FINITE DIFFERENCE FORMS (GIVEN FOR A THREE-LAYER MODEL)

The layer-by-layer vertically integrated hydrodynamical
equations were proposed by Professor Walter Hansen (personal
communication). They are analogous to the well-proven single
layer HN model of the Walter Hansen type (Hansen, 1956) .

Ly - Byt Ry (U1 + H g (V1) =0

T, - Gyt Hy, (U2) + H, (V2) =0

Eq+ Hyg (UB) + Hog (V3)) =0

i+ ! ﬂ:z V1% s et g SRR )

b2 + © Vgiz 28 o kg g %i g, v 9 (- S%) ry, = 0
i3 + D VEEiﬂ:';§7 U3 + fV3 + g %% £, * 9 {1 - gé) =2
i1+ © Vglj + v1° - gy, - ¢ (Y)

V2 + L 332 * V25 o L g g ;% cyy * 9 (1 - é%) R 0
V3 + b vgiz + y3° V3 - fU3 + g g% oy * 9 (1 - gi) t3y = 0



;] - surface elevation

- deviation of MLD (Mixed Layer Depth) from its mean
(initially prescribed) depth

T3 - deviation of second and third layer interface from
its mean (initially prescribed) depth

Uul, V1 - u,v components in first layer

uz2, V2 - u,v components in second layer

U3, V3 - u,v components in third layer

r - friction coefficient (internal friction)
f - Coriolis parameter

ry " bottom friction coefficient

g - acceleration of gravity

H - depth

Py>PpsPg - densities of the respective layers

- external forces

There are three interdependent continuity equations, one
for each layer. These compute the change of sea level, and
the change of depth, and thickness of the layers.

The equations of motion for each layer are vertically
integrated through this given layer. The lower layers are
driven both by internal friction and by pressure gradients.

The finite difference forms used for computation are
essentially the same as in W. Hansen's single layer model,
except the additional terms dictated by the presence of several
layers:
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The computation of U and U 1is also done as in single-
layer model .*

i St 1-0 .t t
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ut U } (19)
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*t St IF A 1 t t t
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o= *
The computation of V and V are analogous to the
corresponding U computations above. The actual depth (and

thickness of the layers) is computed with the following
equations:

t+21 L JURE- Wighty t+T
HU(n,m,l) ] hu(n,m,1) % {C(n,m,1) * g(n,m+1,1)}
1 t+T t+T
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*
For the deeper layer o is substituted with o

d which
has a lower value.
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The following symbols were used in the finite difference
formulas above:

X,y space coordinates

t time

U,V components of velocity

u,v indicators of u and v points (Tocation)
in the grid

h initial depth (when z=0)

z surface elevation (for second and third

layer it indicates the deviation of the
depth of the layer from its prescribed
mean value)

H total depth (H=h+z)

H ,H depths at u and v points respectively

(also actual thickness of the layer at

u and v points)

X, Y components of external forces

T T components of wind stress

=



g acceleration of gravity

f Coriolis parameter

r internal friction coefficient

% bottom stress for lower Tayer

a coefficient of horizontal eddy viscosity

(also acts as a smoothing coefficient)

n,m coordinates of the grid point, 1, 2, and 3
indicate the first %surface), second and
third layer, respectively

it half time step

9 half grid length

P1sP9sP3 densities of first, second, and third
layer

The Courant, Fredrich, Lewy stability criterion applies
to the finite difference formulas given, as is the case with
the single layer model.

The bottom friction coefficient used in this model (rb)
is the same as in single layer models (0.003). There are no
good data available on the suitable internal friction coeffi-
cient (r) to be used. Thus numerical experiments were carried
ocut to find a plausible value. The value of 0.0015, used in
the present model gave satisfactory results.

The horizontal viscosity coefficient o (which also functions
as a smoothing parameter) has the same value for the upper layers
as in the single Tayer model (0.98 to 0.99). However, it has
been found necessary to decrease this coefficient for the lower
Tayers (0.90 to 0.92) in order to smooth out disturbances (short
internal gravity waves) in the interface which occur, especially
in the initial stage of the computations.



3. MODEL INPUTS AND TREATMENT OF BOUNDARIES

The three-layer model uses a staggered grid in the same
manner as the single-layer HN model (Laevastu, 1972). The
initial depths at u and v points were digitized from available
bathymetric charts. The initial depths of the interfaces of
the Tayers (layer thicknesses) were prescribed as horizontal
"flat fields" (i.e., the same depth at each grid point). The
surface elevation was also initially set to zero as is commonly
done in single-layer HN models. The Southern California model
(Figure 1) was set up with the geographic southern boundary
(near San Diego) used as the input boundary located at the top
of the grid (i.e., the grid was rotated 180°). This was done
primarily for the reason that the combined tidal wave moves
from the south into the area under consideration. The tidal
constituents were taken from San Diego (Point Loma) tidal
analyses and introduced at each time step as tidal amplitudes
(Z values) along the second grid line from the top of the
computational grid (the input boundary). The tidal amplitudes
over deep water are usually not known. 1In this experimental
run, the tidal amplitudes at San Diego were extended from the
coast to the outer (seaward) boundary of the grid. An experi-
ment where the tidal amplitudes over deeper water were made
inversely proportional to the depth did not yield better
verification than by prescribing them as equal to those in
shallow water near the coast.

The internal tidal waves must also be prescribed for the
input boundary at the interfaces of the selected layers. Very
little is known about the internal tides. Time series measure-
ments of temperature profiles from surface to bottom indicate
that the internal tidal amplitudes are four to eight times
higher than surface tides and that the amplitude relation seem
to be a function of density differences between the layers.



Furthermore, there is usually a time lag in the tidal phase
between surface and internal tides. In the present experi-
mental run, the internal tide in the second layer was
prescribed with a six times higher amplitude and in the third
layer with a four times higher amplitude than at the surface.
In addition, a two-hour time lag of phase between the layers
was introduced at the input boundary.

The other open boundaries (in this case the seaward
boundary and the northern boundary) must be left entirely open
for inflow and outflow from the computational area. This was
done by prescribing the computationally missing parameter from
the next column or row inward from the boundary. Z values
could be computed at both open boundaries as, for their
computation, U(n,m-1) and V(n-1,m) were available. However,
Z{n,m+1) is required for computing U at the seaward boundary.
Thus, the U computation do-loop stopped one grid point in from
seaward boundary, and the U value at the boundary was pre-
scribed as that of the preceding column. The U value could
be computed at the lower (northern) boundary and the V could
be computed at the seaward boundary. The V value can not,
however, be computed at the lower (northern) boundary, because
its computation requires Z(n+1,m) which is not available. In
this case, the V computation do-loop ends one row in from the
boundary and the V value at the boundary is taken as the value
one grid point up from the lower boundary. In computing U,U*,V
and V* at the boundaries, the missing (outside boundary required)
value (e.g., U(n+1,m)) was taken as the boundary value.

The permanent (thermohaline) currents can be introduced
into the model by prescribing properly computed inclinations
of the boundaries. This was, however, not done in the compu-
tations presented in this paper.

The wind can be prescribed at each time step at each grid
point over the whole area. The computations presented here
had a wind from NNW of 8 m sec™!.



4. RESULTS OF THE COMPUTATION OF CURRENTS WITH A
THREE-LAYER MHN MODEL OFF SOUTHERN CALIFORNIA

The computational grid used in this work is shown 1in
Figure 1. The grid size was 18.532 km. This figure also
shows the locations of special points and sections A and B
from which output is presented in this paper. The harmonic
predicted tides for Long Beach and tides extracted from the
present three-layer MHN model are shown in Figure 2. Con-
sidering the relatively coarse grid used in the model, and
that the model output is taken from a point offshore (Point 3
on Figure 1) from the mareograph station, the verification
can be considered good.

Figures 3 through 26 show instantaneous portrayals of
tidal currents in the three layers at various tidal stages
which are marked in Figure 2. The features of these figures
are too numerous to describe in the text. Therefore only a
few are pointed out and the comparison of the figures are left
for readers who are interested in details of currents
(especially tidal currents) in the sea off southern California.

Figures 3 to 5 show the currents during principal Tlow
water at Long Beach. The currents are ebbing at the surface,
but in deeper layers are changing to flooding currents and
there is, therefore, an apparent turning of currents to the
lTeft relative to the surface current. (Note the change of
speed scales between the surface and deeper layer current
plots.) The currents in the second and third layers are
relatively similar in direction, but bottom currents (third
layer) are weaker than the currents in the second layer.

Figures 6 to 8 show the currents two hours after principal
lTow water at Long Beach. The relation of currents between the
different Tayers is more complex than two hours earlier. There
is a noticeable convergence in the central area in the second
layer, whereas currents are flooding fully in the third layer.



Figures 9 to 11 show currents at secondary high water
at Long Beach. Flooding currents occur in all layers. The
currents in the deeper layers turn towards the right with
relation to surface layer currents.

Figures 12 to 14 show currents two hours later when the
current is changing to ebb in all layers.

Figures 15 to 17 show the currents during secondary low
water at Long Beach. The currents are ebbing in the surface
layer and are turning to flood currents in the lower layer,
with an apparent turn to the left. However, the currents in
the third layer turn somewhat to the right as compared to the
second Tayer.

Figures 18 to 20 give the currents two hours later. The
currents are still ebbing at the surface but are starting to
flood in the Tower layers. The currents in the deeper layer
now run to the right in relation to the surface layer,

Figures 21 to 23 show the currents during principal high
water at Long Beach. There are still ebbing currents at the
surface but flooding in deeper layers. The currents two hours
later (Figures 24 to 26) show the same condition, except the
deep layer currents now turn more consistently to the right
with relation to the surface layer.

Figures 27 to 36 show the tidal curves, the change of the
depth of interfaces between the second and third layers, and
currents and current roses at special output points. The
lTocations of these output points are given in Figure 1. There
are considerable differences in the behavior of currents from
one location to another as could be expected by the special
bathymetric features.

Figure 37 gives the depth along sections A and B (see
Figure 1 for locations) and the Figures 38 to 41 show the
change of the depth of the interfaces.



Figures 42 to 45 show the sea level topography at the
four special output times (see Figure 2) and Figures 46 to 49
show the topography of the bottom of the first layer (the
Mixed Layer Depth). Greatest changes in the MLD occur at the
continental slope (as also known from empirical observations).

Figure 50 shows the rest currents (residual current after
a full tidal cycle) with a NNW wind of 8 m sec™ .
the rest current is Targely determined by the prescribed

As seen,

prevailing wind.

No coherent data on the tidal current regime off southern
California are available from empirical measurements as such
measurements have not been carried out systematically in this
area. However, some attempts have been made by Jones (1971)
to construct the average geostrophic surface flow in the area
under consideration. Some similarities between the current
features presented here and that of the circulation picture
presented by Jones can be recognized.



5., SUMMARY

The hydrodynamical formulas and their finite difference

forms for a 3-layer MHN model of W. Hansen type given in this

paper present a model for which the properties are vertically

integrated through any given layer. Reliable information on

the proper value of the internal friction coefficient does

not exist and an experimental value was used in the program.

The computational results reveal the following points:

(1)

A comparison of harmonic predicted tides and tides
extracted from the MHN model are in good agreement
despite a coarse grid (18.532 km) and extrapolation
of coastal tidal harmonic constituents outward to
the open boundary.

The currents in deeper layers turn, in most cases,
toward the right of the current direction in the
surface Tayer. However, occasional left turns can
be noticed in changing regimes (i.e., when tidal
currents in coastal areas change from ebb to flood).

The interface between the layers deepens off the
continental slope and the largest fluctuations are
also shown by the model in this region. This
behavior of the MLD is in agreement with observations
as the greatest MLD fluctuations (internal waves)

are usually observed at the continental slope.

The model shows a time lag in the time of low (or
high) water in different layers. This time lag varies
with location.

The general conciusion from this paper is that the

real-time currents, including tidal currents can be
reproduced with Multi-Layer Hydrodynamical-Numerical
models with multiple open boundaries, provided that
correct input boundary conditions can be prescribed.
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Currents in the surface layer 2 hours after principal low water at

Figure 6.

Long Beach.
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Currents in the bottom layer 2 hours after principal low water at

Long Beach.

Figure 8.
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Figure 10. Currents in the intermediate layer during se

at Long Beach.
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Figure 1ll. Currents in the bottom layer during secondary high water at Long

Beach.
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Long Beach.
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Currents in the surface layer 2 hours after principal high water

at Long Beach.

Figure 24.
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